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In many ion exchanges that involve zeolites, more than two types of exchanging ions
are involved. Most work to date has been concerned with equilibria involving two
different types of ion only. In this paper, a recently devised thermodynarnic treatment
for exchange equilibria involving three ions is tested experimentally. In §1 the most
important aspects of this thermodynamic model are discussed, and after this the
experimental techniques necessary to obtain a ternary exchange isotherm are
summarized. Data for three binary exchanges in synthetic mordenite are presented
in §3 (the ion pairs Na-NH,, NA-K and K-NH,) together with a ternary isotherm
obtained for the simultaneous exchange of Na*, NH;} and K* ions in the same zeolite,
all data being measured at a temperature of 25 °C. After some general considerations
in §4 on the nature of non-ideality in the zeolite phase and its effects on the variation
of observed ion selectivities as a function of exchanger composition, the experimental
data are next used to test, first, the validity, and secondly the range of applicability
of numerous models found in the literature, all of which attempt to predict
multicomponent exchange equilibria from binary exchange data alone. In §5 models
that were developed primarily with ion exchange resins in mind are discussed
(Soldatov & Bychkova 1980). In §6 approaches that attempt to predict, from binary
activity data, the coefficients of ternary exchanger systems are considered, especially
those that have been used with some success on clays (Elprince & Babcock 1975; Chu
& Sposito 1981). All of these models are shown to be, at best, only partially successful
in predicting experimental data for the comparatively simple Na-INH,—K—mordenite
exchange -system. The use of zeolites seems, therefore, to introduce additional
complications. The recently developed model of Fletcher & Townsend (1981 b) is next
used to determine directly the exchanger phase activity coefficients @y,, ¢yg, and
éx, and these are indeed found to vary with the exchanger phase composition in a
complicated manner. Finally, in §8, the observed non-ideality of the ternary exchange
system is rationalized in terms of site heterogeneity within the zeolite framework, and
the consequences of this phenomenon are discussed, particularly with respect to the
problems this presents in the successful prediction of multicomponent exchange
phenomena, when only a limited quantity of data are available.
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2 25 Very many theoretical and experimental studies of ion exchange equilibria that involve just
QO two exchanging ions can be found in the literature. However, it is only comparatively recently
O that much attention has been paid to the problem of understanding multicomponent ion
v '

exchange equilibria, despite the fact that many natural and industrial processes involve more
than two types of exchanging ions. An important requirement of any successful model of
multicomponent exchange is that it be able to predict equilibrium compositions of the system
over a range of conditions, with use of, perhaps, a necessarily limited quantity of accurate
experimental data. As such, it is natural that many of the models that have been derived have
sought to predict multicomponent compositions from data obtained for binary ion exchange
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THERMODYNAMICS OF TERNARY ION EXCHANGE 143

Theoretical studies of multicomponent exchange equilibria have been developed in parallel
by workers primarily interested in either resins or clays or zeolites. The resulting models have
similarities, but each have also their distinctive aspects, reflecting to some degree particular
behavioural characteristics of the ion exchanger that was of primary interest. Detailed studies
on multicomponent exchange equilibria in resins have been in progress for more than a decade
(Soldatov & Bychkova 1971, 1980; Kol’'nenkov & Bogomolov 1977) while studies on clays by
a quite different approach were initiated somewhat more recently (Elprince & Babcock 1975;
Wiedenfeld & Hossner 1978). Subsequently another model, which is designed to predict ternary
equilibrium compositions in clays from binary exchange data, has been reported (Elprince ef al.
1980; Chu & Sposito 1981). Some of these models will be discussed in greater detail later
in this paper; all of them involve simplifying assumptions with regard to the behaviour of the
activity coefficients that describe the non-ideality of the exchanger phase.

A series of theoretical studies on binary ion exchange in zeolites were made by Barrer &
Klinowski (1972 a,1974a,1979a) and by Barreretal. (1973). Ageneralstatistical thermodynamic
theory of isomorphous replacement in zeolites has also been given (Barrer & Klinowski 1977)
and the subject has been considered also from the viewpoint of order—disorder theory (Barrer
& Klinowski 19795). The first detailed report of a ternary ion exchange system in a zeolite
was by Barrer & Townsend (1978), and subsequently, detailed studies on the Na—Ca—Mg—A
system have appeared (Rees 1980; Barri & Rees 1980). Other binary exchange studies (Barrer
& Townsend 1976; Fletcher & Townsend 1980) have shown that the activity coefficients for
ions in association with their equivalents of zeolite framework can vary in a complicated manner
with exchanger composition, and considerations of other work (Barrer et al. 1973; Barrer &
Klinowski 1977) led to the conclusion that these variations must be ascribed to changing
populations and compositions within the exchanger site sets that comprise the zeolite (Fletcher
& Townsend 1980). It appeared therefore that models for ternary or multicomponent exchange
that had been developed for clays and resins might not be appropriate for zeolites (Fletcher
& Townsend 19814), and so an appropriate thermodynamic treatment, which makes no
structural assumptions about the nature of the non-ideality of the exchanger phase, was derived
(Fletcher & Townsend 19814, 1981¢).

This paper reports the first comprehensive experimental test of this new model. The ternary
system Na-NH,~K-mordenite was chosen for this test for two main reasons. First, mordenite
is a highly siliceous zeolite, and is therefore particularly resistant to dealumination followed
by consequent destruction of the lattice framework (McDaniel & Maher 1976). Hydronium
ion exchange (Barrer & Klinowski 1975) was also minimized by using the above choice of ions,
since the external pH was always close to neutral. (Both dealumination and hydronium ion
exchange can lead to apparent non-stoichometry of exchange, which would unnecessarily
complicate this study). The second main reason for choosing this system is that it was already
known (Barrer & Klinowski 1974 4) that sodium, ammonium and potassium ions all exchange
to 1009, of the exchange capacity of the zeolite. So problems entailed in ‘normalizing’ the
isotherms (Barrer et al. 1973) were avoided.

Some general points with regard to the thermodynamic model are emphasized here. First,
the approach used for the exchanger phase involved essentially integrating Gibbs—Duhem type
equations (Fletcher & Townsend 1981 4). Such an approach relies for its precision on accurate
data and reliable extrapolation to compositions involving limiting concentrations of one or more
species. A degree of inherent uncertainty is therefore introduced into the calculations; this
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matter is discussed further in§5 and §7. A second consequence of employing Gibbs—Duhem-type
equations is that the thermodynamic equilibrium constants so derived should be subject to an
internal consistency test §5 and §7). Finally, it is emphasized (in common with a wide range
of thermodynamic calculations) that the evaluation of the thermodynamic equilibrium
constants themselves gives no information on the equilibrium concentrations of the system as a
function of composition: for this, a knowledge of activity coefficients in both the solution and
exchanger phases is required. Activity coefficient data for salts in the mixed electrolyte solution
is not a matter that is considered in detail here; values were derived from a recent extension
(Fletcher & Townsend 1981¢, 1983) of the models of Guggenheim (1935) and Glueckauf
(1949). In contrast, the means by which accurate values may be found for the activity
coeflicients of components in the exchanger phase is the major concern of this paper.

List of symbols
a, activity of ion u in the aqueous solution phase
a, activity of ion u in the zeolite phase
Ju rational activity coefficient (i.e. from using a measurement scale involving mole
fractions X) for ion u in zeolite phase
Jij rational activity coefficient for ion i at a composition X, for a binary exchange
involving only ions i and j
i value of f;; as X;—>0
u activity coefficient of ion u in exchanger phase with use of equivalent fraction
E, as the measurement scale rather than mole fraction
&8 binary activity coefficient of ion A in the presence of ion B with use of the
equivalent fraction convention (following Soldatov & Bychkova 1980)
&ij activity coefficient of ion i at a composition E; for a binary exchange involving
ions i and j (cf.g‘ij)
&5 value of g;; as £;—0
k the Boltzmann constant
AoarfomB ratios of two Gaines & Thomas (1953) corrected selectivity quotients (see

definition of K and also (10))

zy valency of cation u

zx valency of co-anion X in solution phase

A, B, C labels for cations Mfé, M]z_,,g, Még, which are involved in a ternary exchange
process (see equation (1))

E, equivalent fraction of ion A in solution

E, equivalent fraction of ion u in zeolite (defined in (7)). For binary exchanges
E,+E, = 1; for ternary exchanges E,+ E,+E,, = 1

E, relative concentration term, expressed in equivalent fractions, and defined so
that if (for example) E,, is kept constant, then E,, = E,/(1—E,)

uGE excess free energy term for binary exchange involving ions u (initially in solution)
and v (initially in exchanger)

UAGe standard free energy change for binary exchange involving ions u (initially in
solution) and v (initially in exchanger)

WAG® standard free energy change for ternary exchange involving ions u, v, w. Ion

u is initially in solution and both v and w are in the exchanger (see equation

(1)
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K, thermodynamic equilibrium constant (i.e. in terms of activities a)
uK, thermodynamic equilibrium constant corresponding to YAG®
- thermodynamic equilibrium constant for ternary reaction corresponding to
u AG®
v, w
Kg corrected selectivity quotient in which solution phase concentrations are

expressed in terms of activities, but zeolite phase concentrations are expressed in
terms of equivalent fractions by using the Gaines & Thomas (1953) convention
(hence the subscript G)

P UK corrected selectivity quotient (Gaines & Thomas (1953) convention) for binary
. h exchange involving ions u (initially in solution) and v (initially in exchanger)
u K corrected selectivity quotient (Gaines & Thomas (19 convention) for ternar
>_‘ v, W' G Y q 53 Y
exchange reaction involving ions u, v, w. Ion u is initially in solution and v, w
6‘ C hang t lving v, w. I 1ly in solut dv,
M= are in the exchanger (see equation (1))
23] 5 Ay pseudobinary corrected selectivity quotient (Gaines & Thomas (1953) conven-
O tion), formally identical to %K, but actually expressing the equilibrium
w compositions between ions u and v only i the presence of ion w; so for this function
32 E +E,#1
%O K, mass action quotient, in which no corrections for non-ideality have been applied
85 N to ionic concentration terms in either phase
8 X0 K, mass action quotient in which concentrations in the zeolite are expressed in terms
=<Zz of equivalent fractions
EE S mass action quotient for the ternary exchange reaction involving ions u, v, w.

Ion u is initially in solution, and ions u, w are in the exchanger (see equation

(1))

+

Zu symbol for metal cation involved in exchange reaction, ion label u (see equation
(1))
N number of crystallographically distinct cation exchange sites within the zeolite
N, number of unit negative charges dispersed through the zeolite framework
N number of independent sets of experimental data to which polynomial equations
are fitted
P order of fitting polynomial with respect to concentration variable E
B "Q excess free energy term, following Soldatov & Bychkova (1980), defined in (34)
<« /: 2 order of fitting polynomial with respect to concentration variable Eg
-] - R gas constant
;5 e R summation of residuals function, which gives a criterion for best fit
OH T absolute temperature
e g X, mole fraction of ion A in the zeolite. Thus X, = m,/%,;m;, and should be
Q) distinguished from £,
L O X label for co-anion in solution
v X.,(2) the fraction of the total framework charge which is neutralized by all exchange
5“2 cations found on the ith site group within the zeolite
Eg XL quantity of anionic lattice holding one mole of unit charge
335 h
gg Zp ,§ ¢ coefficients of best-fitting polynomials of orders i, j, p, and ¢, respectively
i @
&~
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uv

u
(v, w)
guX

Pu

Xc-a> Xo-B

Wpa

r
u

v,w

I C-A» r C-B

uv

u.d

separation factor defining the preference displayed by the exchanger for ion u
over ion v; concentration in both phases is expressed in terms of equivalent
fractions E,, E,, etc.

pseudobinary separation factor, in which the preference displayed by the
exchanger for ion u over both v and w combined is defined. The separate effects
of v, w are not considered, so this function is not a ternary separation factor in
the strict sense of the term

molal (i.e. moles per kilogram) activity coeflicient for ion u in the aqueous
solution

mean molal stoichiometric activity coefficient for a pure solution of salt uX at
an ionic strength I. (To keep the symbol as simple in form as possible, the
subscript +uX does not show the stoichiometry of the salt. So, for example, if
the salt is sodium chloride, the subscript is + NaCl, but if the salt is lanthanum
sulphate La,(SO,),, the subscript is still only written as + LaSO,)

mean molal stoichiometric activity coefficient for salt uX in a mixed electrolyte
solution that also contains the salts vX and wX.

ratio of number of cationic sites in zeolite framework to the framework charge
in the same quantity of zeolite (after Barrer & Klinowski 1977)

interaction energy between the ion pair uv within the exchanger

molar volume of homo-ionic u-form of the exchanger

activity correction factor for salt uX in the presence of vX and wX, defined in
(16) (see Fletcher & Townsend 1981¢)

activity coefficient for ion u in association with its equivalent of anionic zeolite
lattice X,

composition dependent crystal phase selectivity function (evaluation of these
parameters leads to the calculation of ¢, ¢, ¢ (equations (20)—(24))
additional change in energy of the crystal, which occurs when two A ions occupy
adjacent sites (Barrer & Klinowski 1977)

overall correction factor to allow for non-ideality in the aqueous solution phase
overall correction for non-ideality in the aqueous solution phase for a ternary
exchange reaction involving ions u, v and w. Ion u is initially in solution and
both v and w are in the exchanger (see equation (1))

overall correction for non-ideality in the aqueous solution phase, implicit in the
functions £¢_,, £¢_p (see equations (10) and (11)) ’
Boltzmann function, which expresses the difference in interaction energies
between like and unlike ion pairs in the exchanger (i.e. A, and A, ; see equation
(46))

overall correction for non-ideality in the zeolite phase

overall correction for non-ideality in the zeolite phase for a ternary exchange
reaction involving ions u, v and w. Ion u is initially in solution and both v and
w are in the exchanger.
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1. THERMODYNAMIC MODEL FOR TERNARY ION-EXCHANGE
(a) Basic definitions
. . . . . . + + +
For an ion exchange process involving three different counter-ion species M4A, MZp and M&¢
three exchange reactions may be written, each having a corresponding thermodynamic

equilibrium constant and standard free energy (Fletcher & Townsend 19814,4). These may
be generalized as

2z, 2, MZi+ 2, 2, M& + 2, 2, MEp =22, 2, M&i+ 2, 2, M2V 42, 2, MZ¥, (1)
where A, B, C u
B, G Al=|v],
C, A, B w

z is the valency of the cation MZi, M%" or M2y and the overbar denotes that the ion is in the
exchanger phase. The thermodynamic equilibrium constants are then

722y 2w 1%u 2w gfulv
_ % APV Oy

u
v,wita

- alzlzvzw ﬁf‘,“ 2w da},zv ’ (2)
where ga;, a; denote activity of ion i in solution and zeolite respectively. Each thermodynamic
equilibrium constant can be expressed as the product of a mass action quotient (K,,), an activity
coefficient factor for the solution phase (I”) and an activity coefficient factor for the zeolite phase

(#)

K,=K,I'®, (3)
where explicitly 220 2w pp2utw mRuty
T v W
v,witm,E — E@usz‘a},zv m2evew (4)
u
Vil = Vi i e (5)
viw® = PRI PipEw Py, (6)

The subscript £ on K, indicates that the exchanger phase composition is expressed in terms

of equivalent fractions E, , ,,, and m denotes concentrations (moles per kilogram) in solution.
. . ) . + . .

The equivalent fraction of (for example) ion M4A in the exchanger is then

o w
Ey=z,my/ 2 zym; (7)
u

with m; being the concentration (in moles per kilogram) of ion i in the zeolite. The Yu,v,w ar€
the ‘activity coefficients’ of the individual ions MZi, M2V and Mz in solution, respectively.
The means by which these can be evaluated is described in §154.

The ¢, ,,  are the activity coeflicients of equivalents of the respective cations in association
with an equal quantity of oppositely charged lattice framework. Thus ¢ ‘does not have the
character of an individual ion activity coefficient but refers to the combination of that ion with
the exchanger in a definite composition of the whole mass’ (Gaines & Thomas 1953).
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(b) Evaluation of thermodynamic equilibrium constants

It is also convenient to consider the quotient
KG = Km I 4 (8)

which has been ‘corrected’ for the bulk phase non-ideality and which is solely dependent on
non-ideality in the zeolite phase. Explicitly (Fletcher & Townsend 19814)

F22y 2y 24w ffuly
Eu APV Ay

- E-guzw E—a\}zv alzlzvzw

UKG

v, W

(9)

The Gibbs—Duhem equation can then be applied to the ternary exchange equilibrium in the
zeolite phase. Integration of all the resulting equations in terms of £, and £y only as the
independent variables leads to a set of equations involving just two ratios (Fletcher & Townsend
1981 5)

£oa= (A?BKG,/BZ,‘CKG)é = FC~A(A?BKm,E/B£,\CKm,E)é (10)

‘c—B = (A(,:BKG/C]?AKG)% = FC—B(A(,:BKm,E/C]?AKm,E)% (11)

The use of the equivalent fraction convention has been criticized recently (Sposito &
Mattigod 1979; Sposito 1981). However, the equivalent fraction refers only to the number of
equivalents of cations in association with an equal number of moles of electrons. The approach
is consistent with that of Gaines & Thomas (1953). The matter is discussed in detail elsewhere
(Barrer & Townsend 1984).

To evaluate £y, and £ g, values of I'_, and I'_g are needed. These functions are defined

as
FC—A = (A?BF/BI}CF)%’ (12)

FC—B = (A(,:BF/C],BAF)%' (13)

(Note that £,_,, £-_p are not identical to the ratios (K¢y/K,) and (K¢y/K,) used in earlier
work (Fletcher & Townsend 1981 4), but are related through the cube root).

vwl';, defined in (5), contains the ‘activity coefficients’ of individual ions. In contrast to the
¢ terms (which, as explained above, are nof individual ion activity coefficients) the y terms
obviously cannot be evaluated separately. Nevertheless, it is possible to evaluate the (U1
functions in terms of ratios of the mean molal stoichiometric activity coeflicients for the salts
in the mixed solution at the required ionic strength. The form of these ratios, and the magnitude
of the correction, depends on the valencies of the three exchanging ions and also on the number
of ¢o-anions in solution (Fletcher & Townsend 1981¢). For the present case of only one co-anion,

(valence zx) then

Toa= (WpT/gcT)} = (E&O/EERD)Yx, (14)
Tepg= (W T/BsT )} = (EgyO/EED)V2x, (15)
and
A, B, C u
C, A, B \4
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THERMODYNAMICS OF TERNARY ION EXCHANGE 149

where y§;% ... are the mean molal stoichiometric activity coefficients of the respective salts
in the mixed solution at the required ionic strength. General equations for the derivation of y
values in the mixed salt solution have also been derived recently (Fletcher & Townsend 1981¢);
however, for the system discussed in this paper z, = z, = z,, and it has been shown (Fletcher
& Townsend 1983) that the £ ratios in such a case are constant irrespective of the solution phase
composition, and equal to

I'o_s= (')’iAx/'}’w_ch)[zz(“zxmzx], (17)
and

I p = (Yipx/Y+cx)FE02x], (18)

where z =z, = z, = z,.
A general expression for the thermodynamic equilibrium constants then follows, namely

1 _ 1 _
In (% K,) = zy(zy—2zy) + 24 (2o —2y) +f0 LIn#y ,dE, + jo Ln#£,_gdEg  (19)

where I, and I, are integers as indicated: for

u
A, B, C,—2 +1 v
B, C, A,+1,——2]= w
C, A, B,+1,+1 I
L
and the activity coefficients are respectively
Ey _ 23 _
In ¢4p?c = f Inyc ,dE, +J In o pdEg, (20)
1 0
Ea — Ep —
ingipe = [ Minxe dBy+ [ inxepdB, (21)
) 1
EA — E_B —
In péass = f InycadE,+ f In yogdEg, (22)
) 0
with Xoa = (Ao-a/AE-s) exp[—zp(z0—2)], (23)
Xc-B = (£cB/AE B) exp[—za(zc—2z8)], (24)

A& A, A&  are the values of £¢_,, £ p at E,, Ep, i.e. at the composition for which the values
of ¢,, ¢ and @ are required.

2. EXPERIMENTAL
(a) Materials and methods

Synthetic mordenite in powder form (‘Na-Zeolon’) was supplied by Norton Chemicals
U.S.A. Before chemical analysis, the material was exchanged with sodium chloride solution
of concentration 0.5 mol dm™, then washed thoroughly with distilled water. This procedure
ensured that the starting material was in the homoionic sodium form. After drying and
equilibration of the material over a saturated sodium chloride solution in a desiccator for two
weeks, to ensure an equilibrium uptake of water into the zeolite, the sodium mordenite was
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analysed (Barrer & Townsend 1976). The unit cell composition was Na, ;(AlO,), ,(Si0,),.¢
25.6 H,0. A small quantity of iron was also detected (5.6 x 10™* moles of Fe,O, per hectogram
of zeolite).

To evaluate the respective equilibrium constants and exchanger phase activity coefficients
for ternary exchange, it is necessary to obtain equilibrium data points covering the whole of
the ternary crystal phase composition. Only then can the necessary integration procedures be
effected (equations (19)—(22)) by using appropriate best-fitting polynomials (Fletcher &
Townsend 19814). Equilibrium points were constructed over the complete crystal phase
composition surface by equilibrating for three days sets of samples of the homoionic sodium
mordenite (each sample an accurately weighed portion of ca. 0.2 g) with corresponding sets
of 50 cm® volumes of solution containing varying ratios of the three exchanging cations. All
solutions had a constant total concentration of 0.1 mol dm™2 in the three chloride salts, and
the temperature was maintained at 25 °C. Initial solution compositions were chosen in order
to scan systematically over the whole composition range. So, for example, one set of solutions
had, before equilibration, a constant 1:1 ratio of potassium: ammonium ions, but the sodium
content varied through the set from 09, to 909, of the total. The total salt concen-
tration was kept constant at 0.1 mol dm™3. A similar procedure was employed recently in
studies on the Ca—Mg—Na—A system (Barri & Rees 1980).

After centrifugation, both separated phases were analysed for all three cations. For this
purpose the mordenite samples were dissolved by digestion in a 1:1 nitric acid:H,O mixture
over a steam bath for about one week.

(b) Tests for thermodynamic reversibility

Before the experimental data can be subjected to a thermodynamic treatment, it is important
that the exchange isotherms be shown to be reversible. For the three binary exchange isotherms
reversibility was established by conventional techniques (Fletcher & Townsend 1981d).
Determining reversibility in ternary systems is problematical because equilibria are characterized
by two linked surfaces representing equilibrium compositions for the two phases (Fletcher &
Townsend 19814). The additional degree of freedom possessed by a ternary exchange means
that it is not possible to force the composition back to the pure sodium form of the zeolite along
the same path as was traversed for the forward exchange. Consequently there is no simple
technique involving inspection of graphical data that can confirm that the system is reversible.
Therefore reversibility was inferred from the observed reversibility of the three conjugate binary
systems, and this inference was confirmed by calculating mass action quotients with either the
pure potassium or the pure ammonium forms of the mordenite as the starting material.
Reversibility was regarded as established if these mass action quotients agreed well with the
values predicted from the polynomial derived from fitting the experimental data obtained with
homoionic sodium mordenite as the starting material.

3. ION-EXCHANGE ISOTHERMS
(a) Exchanges involving two ions only

Binary exchange isotherms for the ion pairs Na-NH,, Na-K and NH,-K are shown in
figure 1. The data are plotted in terms of the equivalent fraction of one of the counter-ions in
solution against the equivalent fraction of that same ion in the zeolite at equilibrium. Since the
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FiGurE 1. Binary isotherms for (a) Na—NH,, (4) Na—K and (¢) NH,~K exchanges at 25 °C in synthetic
mordenite. Forward points (@) ; reverse points (a).

TABLE 1. THERMODYNAMIC DATA FOR BINARY EXCHANGE SYSTEMS

3
coefficients, ¢, for substitution in In (¥Kg) = X ¢, E*. uAGe

n=0 il
u v n=20 1 2 3 UK, J mol™?
NH, Na +1.33 +1.56 —5.69 +5.27 4.599 —3780
K Na +3.24 —6.53 +9.48 —b5.24 7.482 —4986
K NH, +0.870 +0.224 —0.774 —0.927 1.637 —1221

exchanges are binary, the other ion is also defined. The polynomial equations describing the
dependence of the logarithm of the corrected selectivity quotient 3K on the crystal phase
composition are given in table 1. Also shown are the corresponding values for the thermo-
dynamic equilibrium constant and standard free energy, calculated from the approach of
Gaines & Thomas (1953).

(b) The Na—NH,—K ternary isotherm

When limited data on a ternary equilibrium are available, the results can be expressed by
plotting the composition of both phases on one triangular coordinate diagram, with either
tie-lines or numbers to join equivalent experimental points for each phase (Barri & Rees 1980).
When there are a large number of data points this approach becomes confusing, but where
clear and consistent trends in selectivity are discernible it is possible to depict the data by using
a separate triangular plot for each phase, with only some data points numbered to correspond
(Soldatov & Bychkova 1980). The data for the ternary system Na-NH,~K-MOR are shown
in this form in figure 2. A total of 82 experimental points for the ternary equilibrium were
measured. The figure serves to show the numbers and distribution of points that are necessary
to represent adequately the equilibrium characteristics of a ternary ion exchange system, but
selectivity trends are still difficult to discern. A more satisfactory representation of the ternary
equilibria can be obtained if the triangular coordinates of the solution phase are superimposed
upon those of the crystal phase, with the coordinates of the former distorted so that any point
on the solution phase falls on top of its corresponding equilibrium point for the crystal phase.
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Eg,=1
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Ex=1 = Ex=1
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Ficure 2. Ternary isotherm for the Na-NH,~K equilibrium in synthetic mordenite at 25 °C. Examples of
experimental data obtained for (a) crystal and (b) solution phase. Points numbered correspondingly represent
tie lines between the two diagrams.

This procedure is shown diagramatically in figure 3. To achieve this transformation, two
constants ¢, and ¢, were defined so that

¢ =E, EB/E—A Ey = f(Ey, Eg), (25)
gs = Ep EC/E—AE = f(E,, Ep). (26)
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The dependence of ¢, and ¢, on E, and Ep was determined by best-fitting these terms to
polynomials in £, and Ey. Then E, was varied in increments of 0.1 and for each of these
increments ¢, and ¢, were calculated for small increments in Eg from Eg =1—FE, to Eg =0

Na

_]x
>~
O H
~ =
k= O
= O
= uw

Ficure 3. Diagram of the superimposition of distorted grid-lines for the solution phase on top of the crystal phase.
In (a) examples of data for both the solution (@) and crystal (o) phases are shown, joined by tie lines. In (5)
the resulting distorted gridlines for the solution phase are shown.
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(Eo was defined in this way as well). For each increment, ¢, and ¢, were then solved
simultaneously te yield values for £, and Ej. The same procedure was then repeated én toto,
but with increments of 0.1 in Ez and E, being varied from 1—Eg to zero for each Egy
increment. In addition to all the ternary results, the data for the three binary isotherms were
used to define ¢, and ¢, along the edges of the triangular coordinate diagram. The result (based
on a total of 150 experimental data points) is depicted in figure 4.

Na

_ 7S AN
(7 ] —q‘—_!—:-gw e LT ="\

NH, K

Ficurk 4. Ternary isotherm for the Na-NH,~K equilibrium in synthetic mordenite at 25 °C, depicted with the
109, grid lines for the solution phase distorted with respect to the crystal phase.

The grid lines corresponding to high values of the equivalent fraction of sodium in solution
Ey, are seen to be widely spaced, which indicates that the quantity of sodium ion found in
solution at equilibrium remains high, even when the zeolite phase contains a large proportion
of the other two ions. So, for example, consider the phase composition ENH4 =0.3, Fx = 0.25
(marked with a star on figure 4). Although the percentage of sodium in the zeolite at this point
is only 459, that in the bulk solution at equilibrium is 80 %,. In addition, note that for high
Ey, values the spacing of the solution phase grid lines is more marked for low ENH4 values than
for low Eg values. This shows that a marked preference is displayed by mordenite for either
potassium or ammonium over sodium, and that potassium is especially favoured.

The reversibility of the ternary exchange isotherm was confirmed by the procedure described
in the previous section, starting with either the homoionic potassium or the ammonium forms
of mordenite. The values of the ternary mass action quotients (equation (4)) so obtained are
given in table 2. For comparison, values of ;" K,, p are shown, which were predicted by
appropriate interpolation of the polynomials that represent the dependence of the mass action
quotients on the crystal phase composition by using only the data obtained with homoionic
sodium mordenite as the starting material (figures 2 and 4). As a further check, data were
obtained for the ternary exchange equilibrium at the higher and constant total solution
concentration of 0.3 mol dm™2. The concentration—valency effect (Barri & Rees 1980) does not
operate when all the exchanging ions are univalent (Barrer & Klinowski 1974) and the
correction for solution phase non-ideality ,",I" is negligible at these concentrations (Fletcher
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TABLE 2. REVERSIBILITY TESTS ON THE TERNARY ISOTHERM

(Values when K-MOR was the starting material are in the top half; values for NH,~Mor as starting material,
in bottom half)

Na K NH4K K K
NH,, K\m, E K,Nallm, B Na,NH\m, E
Fy, Exg . predicted measured predicted measured predicted measured
, 0.344 0.438 0.0352 0.0382 1.83 2.06 15.51 12.65

— 0.248 0.345 0.0433 0.0468 2.53 2.53 9.21 8.94

~ 0.199 0.279 0.0460 0.0481 3.11 2.92 6.94 6.89
] 0.158 0.239 0.0440 0.0451 3.79 3.52 5.99 6.28
< 0.125 0.198 0.0410 0.0424 4.42 4.16 5.51 5.67
>-4 >" 0.095 0.163 0.0362 0.0381 5.65 5.64 4.89 5.19
O = 0.071 0.125 0.0328 0.0351 5.91 6.27 5.16 5.43
Qﬁ 5 0.045 0.094 0.0326 0.0347 7.97 7.49 4.20 3.85
= O
: O 0.014 0.912 0.0019 0.0026 6.74 5.40 78.41 72.07
Hw 0.027 0.160 0.0281 0.0305 2.70 2.21 13.14 14.91
- 0.046 0.744 0.0089 0.0084 3.95 3.53 28.44 32.37
5 4 0.077 0.666 0.0161 0.0150 3.08 2.88 20.13 22.77
E 9 0.122 0.566 0.0287 0.0243 2.15 2.56 16.61 16.25
n.L") N 0.155 0.497 0.0390 0.0350 2.17 2.43 11.82 12.07
8 <0 0.206 0.387 0.0426 0.0442 2.32 2.47 10.11 9.25
o) ‘2 0.245 0.283 0.0474 0.0482 2.83 2.96 7.52 7.07
=
T
O =

TABLE 3. REVERSIBILITY TESTS ON THE TERNARY ISOTHERM FROM DATA OBTAINED AT
HIGHER SOLUTION CONCENTRATIONS

N}I‘ITa KK NH, K K K
'y m, E K,Na"‘m, E Na,NH."‘m, E
Fya Exu, predicted measured predicted measured predicted measured
0.016 0.748 0.0050 0.0043 4.86 5.07 41.05 46.04
0.025 0.651 0.0065 0.0068 4.65 4.35 32.41 33.17
0.040 0.562 0.0130 0.0119 3.13 3.53 24.50 23.61
0.052 0.466 0.0180 0.0178 3.23 3.25 17.20 17.25
0.080 0.399 0.0255 0.0271 3.18 2.99 12.32 12.31
0.105 0.318 0.0336 0.0366 3.23 3.10 8.45 8.80
0.083 0.825 0.0025 0.0025 6.07 6.24 66.14 63.85
0.133 0.232 0.0451 0.0433 3.75 3.68 5.92 6.26
> 0.131 0.500 0.0281 0.0303 2.79 2.49 12.71 13.19

<, 0.106 0.406 0.0291 0.0318 2.89 2.77 11.89 11.35

— 0.088 0.335 0.0331 0.0325 3.18 3.15 9.48 9.74

< 0.068 0.281 0.0319 0.0312 3.67 3.63 8.53 8.83

> > 0.054 0.230 0.0296 0.0309 4.23 4.30 7.99 7.53

O = 0.043 0.185 0.0292 0.0309 5.23 5.08 6.54 6.37

e 28] 0.035 0.142 0.0321 0.0333 6.06 6.01 5.14 4.99

e
E—l O
= 9) & Townsend 1981¢, 1983), so mass action quotients obtained at this higher concentration could

be compared directly with those predicted by interpolation of the polynomials. Again,
reversibility was confirmed (table 3). In comparing these data, it should be remembered that
a comparison of the % K, 5 values is a more sensitive test of reproducibility than a direct
comparison of measured and predicted chemical compositions. This is because of the powers

in £, and m, (equation (4)).
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4. EFFECTS ON SELECTIVITIES OF NON-IDEALITY IN THE EXCHANGER PHASE
(a) General considerations

The isotherm shown in figure 4 gives an overall view of the selectivity properties of the ternary
exchange system as a function of composition of the crystal phase. The selectivity manifested
at any point on the isotherm is the combined result of several factors, these being:

(a) theinnate properties of the exchanging ions and the co-ions in aqueous solution, as found
in their defined Henry Law reference states (namely the hypothetical ideal molal solutions of
the pure salts (Robinson & Stokes 1959)),

(6) theinnate properties of the exchanging ions in the particular zeolite under study, as found
in their defined Raoult Law reference states (namely the homoionic zeolites in equilibrium with
an infinitely dilute solution of the same ion (Gaines & Thomas 1953));

(¢) the departure from ideality of the ions in the actual mixed solution;

(d) the departure from ideality of the mixed M, , Xy, solid solution of zeolite.

Leaving aside steric exclusion effects (Barrer & Townsend 1978), the factors that affect the
innate selectivity of the system are primarily electrical in character, and include the charge
density, polarizability and ionic radius of each of the exchanging ions, together with the lattice
charge density and the ratio of crystallographic cation sites to the framework charge within
ezch - e set in the zeolite. The first four properties can be adequately rationalized in terms of
dielectric theory (Barrer & Falconer 1956; Barrer, Rees & Shamsuzzoha 1966; Barrer &
Klinowski 19724; Fletcher & Townsend 19814d) and the effect of the last property has been
quantified in a statistical thermodynamic model (Barrer & Klinowski 1977).

In an ideal exchange, the mass action quotient will have some constant value greater than
zero for all exchanger phase compositions, the actual magnitude of X,, r depending on the
relative properties of the ions in the two phases in their reference states, and this value will
be equal to the thermodynamic equilibrium constant. Variations in the mass action quotient
with composition arise from non-ideality within the two phases. So if the correction for
non-ideality in solution is applied to obtain the corrected selectivity quotients (%, Kg, it follows
that any variation in these functions with crystal phase composition must arise from non-ideality
in the exchanger itself. If the variations of the binary K functions with crystal phase
composition are small or near monotonic, it is likely that a simple model will enable prediction
of ternary equilibria from binary data alone; if not, it is probably necessary to effect the rigorous
experimental procedure described in this paper.

(b) Evidence for non-ideality from experimental selectivity trends

Figures 6-8 are contour diagrams (derived by using third order polynomials in both Ey, and
E_NH4)’ which show general trends in the logarithm of the corrected selectivity quotients
e kKo & NaKg and y, %g, K with crystal phase composition. These K values were
calculated from activity coefficient data for the three salts NaCl, KCI and HN,Cl found in
Robinson & Stokes (1959), and the corrections for the mixed electrolyte solutions were applied
by using the equations of Fletcher & Townsend (1981¢). It is apparent that the variation of
these functions with the crystal phase composition is complicated, which indicates a degree of
non-ideality in the crystal phase, which probably arises from the existence of different sets
of ion sites within the zeolite (Barrer & Klinowski 1977; Fletcher & Townsend 1981 4a).

The ", K functions not only provide evidence of marked non-ideality in the mordenite,
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Ficure 5. Contour map of the corrected selectivity quotient In (y® xK¢) as a function of
' crystal phase composition.
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Ficure 6. Contour map of the corrected selectivity quotient In ({54 K) as a function of
crystal phase composition.

Ficure 7. Contour map of the corrected selectivity quotient In (y, %,K¢) as a function of
crystal phase composition.

but they also give a general picture of the preference exhibited by the zeolite for each ion. In
figure 5 the selectivity for ammonium or potassium, or both, over sodium is seen. The
logarithmic function is always negative, which indicates that the latter two ions in any
combination are always preferred over the sodium. The selectivity for sodium varies substan-
tially, however, reaching a maximum in the region Ey, ~ 0.3, Eyg, >0. The preference
decreases slightly in the two regions Ey,—~1, £x—1, and the presence of ammonium ion in
the mordenite seems always to affect adversely the already low sclectivity for sodium. The lowest
preference for sodium is exhibited in the region in which ENH4—>1. The preference for
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Ficure 8. Contour maps of (a) In £y _y, and (b) In£x_yg, as a function of crystal phase composition. These
contour maps were derived by using third order polynomial fits.

ammonium ion over sodium and potassium is seen in figure 6. In contrast to the previous case
the logarithm of the corrected selectivity quotient is now always positive, reflecting primarily
the preference that mordenite displays for ammonium over sodium, since mordenite shows fairly
similar selectivity behaviour for both ammonium and potassium (see the portion of figure 6
in which Ey, ~0).

Selectivity for the ammonium ion is greatest when either Ex -1 or (surprisingly) when
E—NH4->1. The minimal preference for ammonium is displayed when Ey, 0.5 and Ex 0.
This may be connected with the relative populations of ions in different sites in the crystal.
It is known that in the sodium form of mordenite, only half the exchangeable sodium ions are
situated in the main channels (Meier 1961; Barrer & Klinowski 19744). Although the
preference of mordenite for ammonium and potassium over sodium is similar in magnitude,
the values of In (y, %z, Kg) shown in figure 7 indicate that generally potassium is just preferred
over ammonium. Selectivity for potassium over sodium and ammonium is seen to maximize
in the region where Ey, ~ E—NH4 ~ 0.5 and Ex 0. In contrast to the case of the ammonium
ion in figure 6, selectivity for potassium is seen to decrease as fy — 1.

By using (19), the standard free energy changes y§* gkAG®, F¥4AG® and y, K5, AG® were
found to be +8.87, —2.56 and —6.32 k] mol™}, respectively (§54). These functions give an
overall affinity sequence, namely that the affinity of mordenite for the ions increases in the order
Nat < NH} < K*. This mirrors the general conclusions drawn above, but it is strongly
emphasized that the overall order of thermodynamic affinity must not be confused with the
selectivity sequence observed for a particular composition, because crystal and solution non-
ideality may serve to alter the latter sequence. This may be seen from an examination of contour

diagrams representing the variation of the functions In £ , and In£, g (equation (19)). For
the Na-NH,~K-MOR system,

’€C—A = (Na,I{NH4KG/NII§ﬁ KKG) (27)

and £op = (naNu, Ko/ RaKe) = anu, Ex/ax Exn, = fx~n, (28)

11 Vol. 312. A
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The functions £ y, and £ yy, are seen to be pseudobinary corrected selectivity quotients,
representing as such the preference that the mordenite displays for one of a particular pair of
ions in the presence of the third ion. Thus £¢_, represents the preference of mordenite for potassium
over sodium in the presence of ammonium, and figure 84 shows that for all values of E_NH4
the preference order is Nat < K, in agreement with the affinity sequence above. In contrast,
figure 84 shows the effect on In £ yy, of varying the sodium content of the zeolite. Movement
along any line of constant ratio Ey,/Eyy, towards Eyx = 1 results in a steady decline in the
value of In#y yy, until the values become negative. So, for example, at a composition of
Ey, = 0.2 and Eyy = 0.5, the selectivity sequence (while taking into account figure 9 also)
is Na* < NH; < K*, in line with the affinity sequence. However, at Ey, = 0.08, Eyy, = 0.2
the selectivity sequence is Na* < NHy ~ K™, and at Ey, = 0.04, Exy, = 0.1 the order has
reversed partially to give Nat < K* < NHj.

5. PREDICTION OF TERNARY EXCHANGE EQUILIBRIA
(a) Futting procedures and experimental uncertainty

The evaluation of the thermodynamic equilibrium constants and free energies of exchange
depend on the accurate integration of polynomials that have been best-fitted to the experimental
data (see also a further discussion on this point in §74). This matter has been considered
previously for binary exchange processes (Fletcher & Townsend 1980), where it was noted that
for cases where one ion is strongly preferred over the other, the experimental error is exaggerated
towards the extrema of the isotherm, with a consequent poorer precision of fit by a suitable
polynomial. For ternary exchanges the problem may be more serious, since it is now necessary
to fit polynomials to surfaces that describe the dependency of the functions £, , and £ g on
E, and Ey (equation (19)). So, taking as an example (N kK,), expressed as a polynomial,
equation 19 becomes

in (it = =2 [ | B B+ 3 g0 )b,

oli

[ £ vp@ar+ £ opefasy = £ Se—2 5 2 )
N + q] — —2y % (20
0 Ve ita @ B =14t ot
Obviously, the accuracy of K, and AG® values so derived depends on how accurately a given
polynomial fits the experimental data. The ‘goodness of fit’ is therefore assessed by using a
summation of residuals function #, where, taking for example £ _,,

213

2 [ln (’€ C-A (predicted)/ ’€ C-A (measured))]

2=1" (N —P—2—1) ‘ (30)

A minimum value in £ with polynomial order gives one criterion for best fit. 4" is the number
of sets of data (in this work A4~ = 82), and 2, 2 are the orders of the polynomial in Ey, and
ENH,,’ respectively. A similar £ function, but excluding 2, has been used previously for binary
exchange studies (Barrer & Munday 1971; Barri & Rees 1980).

Values of # were determined for the Na-NH,~K-mordenite system for both In£y_y, and
In £y yyg, and are shown in table 4. For both functions, minima in # are seen when the
polynomial orders in Ey, and ENH4 are both 4. However, a very strong dependence of K, (and
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TABLE 4. VALUES OF SUM OF RESIDUALS %, DEFINED IN (30), FOR POLYNOMIAL ORDER 1 TO 5
FOR THE FITS OF In £y _y, AND In£y_yp, AS A FUNCTION OF Ey, AND Eyy,

order of polynomial R for R for
for Ey, for Eny, In£x_xa In£x nm,

1 1 0.3667 0.3073

2 2 0.3553 0.2703

3 3 0.3150 0.2630

4 4 0.2827 0.2540

5 5 0.2833 0.2543

TABLE 5. VALUES OF AG® CALCULATED BY USING DIFFERENT FITTING POLYNOMIAL ORDERS
FOR In£y_y, AND In £ x5, AS A FUNCTION OF Ey, AND Eyg

(orders of polynomial for Ey,, Eyxy, respectively for and (ii) In £g_ny,)

( a
@ @ @ G GH @ 3 @ @ G @ ()

i) In£x x
: ..
1 1,1 22 22 33 33 44 33 44 44 55 55

& Yy, 4GO +7.85 +17.70 +7.86 +9.12 +8.87 +9.70
NHAGE —2.87 —2.68 —2.42 —3.04 —2.56 —3.18
o K11,AGO —4.98 —5.02 —5.45 —6.07 —6.32 —6.52
v 5 AGE 0.00 0.00 —0.01 +0.01 —0.01 0.00

therefore AG®) on the polynomial orders is seen in table 5, it is important, therefore, to have,
if possible, an additional criterion on which to base the choice of ‘best-fitting’ polynomial. For
binary exchanges it has been common practice to compare the best-fit analytic function based
on a minimal # value with a ‘by eye’ assessment of the fit. For cases where the isotherm is
highly selective it has occasionally proved better to use a ‘by-eye’ fit and integrate the equation
numerically, even though this is admittedly a somewhat subjective procedure (Fletcher &
Townsend 1980). For those binary exchange systems where the selectivities are not so marked,
such as those shown in figure 1, such a procedure is not necessary, since thermodynamic
consistency requires that Z¥ AG® for the three binary systems be zero. The three AG® values
were each derived independently by using best-fit polynomials, chosen on the basis of minimal
R values, and from table 1, 2% AG® = 15 J mol™!, which is within experimental uncertainty.
It appears therefore that the polynomial equations (given in table 1) are an adequate
description of the selectivity behaviour of these three binary exchanges.

For a ternary exchange, assessments ‘by eye’ are highly subjective, if not meaningless
(figure 9). Fortunately, however, an objective second criterion for choosing the best-fit
polynomials is available for the ternary case, given reliable data on the conjugate binary
systems (figure 1). The thermodynamic treatment for ternary exchange (Fletcher & Townsend
19815) employs the same reference states as the binary exchange model of Gaines & Thomas
(1953). It should therefore be possible to predict the standard free energies of exchange for the
ternary reactions (defined in equation (1)) from the standard free energies of the three conjugate
binary exchanges. From data given in table 1.

NA2KAGE = —NHAGE — K AG® = +8.77 k] mol 2,
IE{%I‘&AGG = §§4AGG_§H4AG6 = —2.56 k] mol™1, (31)
Na N, AGC = ¥,AGO +Ey AGS = —6.21 k] mol L.

I1-2
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Exa
0.875
(a)
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(c)

1.045 v‘ \
QJ’J i’ 0197

0.027

1.
2 —0142
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3 /WW\\/\

ENHa EK ENH4

Ficure 9. Contour maps for In £x_yyg, from polynomial fits that were (a) fourth order in Ey, and Eyy,, and (b)
fifth order in Ey, and Eyg,. In (¢) the contours for this function as estimated from the data ‘by eye’ are
shown.

These predicted values should now be compared with measured *;AG® values, found from
the ternary model. Closest agreement between these and the predicted values given in (31) are
found for the 4,4 polynomials fit (table 5), the measured values of (% AG® are respectively
+8.87, —2.56 and — 6.32 k] mol™!, in excellent agreement with (31). The coefficients for these
best-fitting 4,4 polynomial fits are given in table 6. This is a successful example of the application
of the so-called ‘triangle rule’ (Barrer & Klinowski 19745; Golden & Jenkins 1981).

TABLE 6. COEFFICIENTS OF BEST-FITTING POLYNOMIALS FOR A5 no AND £y
K-Na K-NH,

coefficients of E%, coefficients of E%y,
for dependent variables: for dependent variable:

m In£x Na In £y nm, n In £y Na In % Nm,
0 2.197 —0.2029 1 —3.501 —0.5595
1 —10.97 —3.849 2 21.78 14.03

2 48.32 22.55 3 —31.83 —23.05

3 —67.98 —32.68 4 14.91 10.38

4 31.11 15.24


http://rsta.royalsocietypublishing.org/

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

p
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

/ y

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

THERMODYNAMICS OF TERNARY ION EXCHANGE 161

Successful prediction of standard free energies for the ternary exchange does not, however,
permit the prediction of equilibrium compositions for the ternary two-phase mixture, for the
reasons discussed in the previous section. Two main approaches have been adopted therefore
to allow such prediction. The first of these takes several different forms, but in principle uses
combinations of corrected selectivity quotients to predict the ternary quotients (Kol’'nenkov
& Bogmolov 1977; Kataoka & Yashida 1980; Barri & Rees 1980). The second method involves
making use of solid solution models to predict ternary activity coefficients from appropriate
binary data (Elprince & Babcock 1975; Chu & Sposito 1981).

The first approach entails defining pseudobinary coefficients, formally identical to the
corresponding binary corrected selectivity quotients, which implies that

(Ey/Ey) (Ew -0), (32)

where the superscript ~ implies that a pseudobinary function is being considered, i.e. the third

Lim (SKG)(E'u/E_v) = (vKg)

ion MZ¥ is present. (It is important to note the definition of E; changes in the pseudobinary
coefficient. Thus, for example, when the pseudobinary coefficient is being considered
E, = 1—E,—E_, but for the true binary quotient £, = 1 — E_. This follows from the limiting
condition given above.) If the magnitude of

G) ~
o ko]
w (Ey/Ey)
can be a priori estimated, it follows that one can calculate “K; at any point along a ‘ parametric
line’ (Soldatov & Bychkova 1980) across the triangular coordinate diagram, the parametric

line being one for which the ratio E,/E, is constant. In its simplest form, this method assumes
that along any parametric line

G ]
— (K = 0.
[aEw (V G) (BB

Obviously, this is implying ideal behaviour in the exchanger phase, so in this form this approach
is very limited as far as zeolites are concerned, even for a relatively simple system such as

Na-NH,~-K-MOR.

(b) The model of Soldatov & Bychkova (1980)

A useful modification of this over-simple approach has been developed (Soldatov & Bychkova
1970, 1980). In this method, one of the ions (for example Mix) involved in the ternary exchange
is assumed to affect the other two near-identically. The other two must be the ones that have
the closest properties of the three. Then the following relation is suggested (Soldatov &
Bychkova 1980)

In (dg/¢c) = b+aln (gfV/gtv), (33)

where gV, g are the activity coefficients (convention of Gaines & Thomas 1953) of the
corresponding ions in the binary exchange involving ion Mfg. The terms ¢y, @ are, as before,
the activity coeflicients of the corresponding ions in the ternary system. The term & is a function
of an excess free energy of mixing term of the form

¥Q = (¥G/RT) = E,Ing" + E, In gl"; BNED
since E, = 1 —E,_, then
d[Q) = In (g/g?) dE, (35)
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Equation (35) implies that E is zero. If, however, 2@ is differentiated across a section of the
ternary composition diagram for which E,, = constant, then

d(¥Q)/(1—E,) = In (¢,/¢,) dE, (36)

where E/, is now a relative concentration term (Soldatov & Bychkova 1970). The function can
then be integrated along a line E,, = constant across the triangular diagram from £, = 0 to
E, =1 to give

| I (u/$0) A = In (60/7). (37)

The right side of (37) follows because at the extrema of the line the ternary activity coeflicients
tend to the activity coefficients for the binary systems, u—w and v—w respectively. Also

(B -1 —
f 4Q/(1-E,) =222, (38)
QUEG - ) w
where WQ—%(Q is the difference in excess free energies between the two binary systems at the
extrema of the line across the triangular diagram at constant composition E,,. This is the term
bin (33). The term a in (33) is a transformation coefficient involving E,. In the simplest case,
it is arguable that since ions MZi and MZv are chosen as having the closest properties of the
three in the ternary system it is reasonable (Soldatov & Bychkova 1980) to assume a linear
relation to hold along the parametric line E,, = constant. This makes a linear transform in £,

and overall (Soldatov & Bychkova 1980)

(¢]Z) ( 1—1; )+ (1= Ey) ln(jg) (39)

For the system Na-NH,-K-MOR the ions most similar in behaviour are ammonium and
potassium. It is of interest therefore to see if it is possible to transform selectivity quotients for
the Na-NH, and Na—K binary systems in a linear manner along different parametric lines for
which Ey, is held constant. A convenient function to use for this purpose is the separation factor
a, where
N2 = Exo Exn,/Exn, Exa (40)
and
R'a = Ex, Ex/Ex Ex, (41)

(The use of these functions assumes, of course, that the solution phase correction is not
significant. This is a valid assumption, since for exchange involving ions of one valency only,
vow! is not a function of the exchanger phase composition (Fletcher & Townsend 1983) and
therefore the solution phase correction cannot adversely affect any linear relation between the
a values above). If| to a first approximation, the ammonium and potassium ions are regarded
as behaving identically, then a pseudobinary separation factor (NII\—II;:K)d may be defined as

Na g Ey alExw, +EK) En,(1—Ey,) _(§%I4“) ENH4+(§3“) Ey (42)
N1 E Byt B)  Exa(1—Ey,) (1= En,) '

Since a complete ternary isotherm of the Na-K-NH,~MOR system has been determined
(figure 4) it is possible to predict values of {2 k)@ by (42) and to compare these with actual
experimental data. Experimental data were obtained by interpolation of the best-fitting
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i E,=02 | 04 | 06 | 0.8
0.4} - - -
3 — — [~ B
o3
= (IX X X)
\5 0.2" . .'..... I~

] I ]
025 05 075

Ex Ex Ey Ex

| | ] 1 Il 1 1 | |
0 02505 075 0 025 05 075 0 025 05 075 0

Ficure 10. Plots of the separation factor (yf2 )& as a function of the normalized equivalent fraction of potassium
in the crystal phase (E%) and for different (but in each case constant) values of Ey,. The predicted line of
Soldatov & Bychkova (1980) (solid line) agrees well with measured data from the ternary isotherm.

polynomial for the plot of In (y§?gKg) in figure 5. As explained above, for a homovalent
ternary exchange in dilute solution (% Kg) =~ (%K, g). Also, when the exchange involves
univalent ions only, (" K,, g) = (" ). The results are shown in figure 10; it is seen that for
all four chosen parametric lines of constant Ey,, the preference for sodium is predicted
accurately by (42), in agreement with the expectations of Soldatov & Bychkova (1980). It is
of interest that Barri & Rees (1980) use a similar rationale in their studies on the Na-
Ca—Mg-zeolite A system. In their predictions they join together the £, and E\ values, and
of the three ions in this exchange system the calcium and magnesium are indisputably the most
similar. Using this approach, they achieved a considerable degree of success in predicting
ternary compositions. However, they also emphasized the marked differences in preferences

Ew=02 [ 0.4 0.6 0.8

NH, 4
(K, Nay®

| 1 1
0 025 05 075

L | L | | | 1 | |
0 025 05 075 0 025 05 075 0 025 05 075
Ex Ex Ex Ex

F1curE 11. Plots of the separation factor ', as a function of FE, and for different (but in each case constant)

values of Eyy,. The predictions (solid line) agree poorly with measured data taken from the ternary isotherm.
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for different sites within the zeolite framework, which are manifested by the divalent ions, and
they concluded that as far as zeolite exchange is concerned, ‘the prediction of both zeolite and
solution phase compositions for a ternary exchange from a knowledge of only binary exchange
data still awaits a solution’ (Barri & Rees 1980).

12 E,=02 [ 04 [ 06 0.8

a

K
(Na, NHy)

N

|
.75

| 1 | | 1 ] | ] | I |
0 02505 075 0 025 05 075 0 025 05 075 0 025 05 0
Ei\IH4 /NH4 Ei\IH,. Ei\IHq

Ficure 12. Plots of the separation factor (va NH,@ as a function of the normalized equivalent function of ammonium
in the crystal phase (Eyy,), and for different (but in each case constant) values of Ex. (The predictions (solid
line) agree poorly with measured data from the ternary isotherm.

For comparison, values of g%, & and (Na,IiIH‘,)d were also predicted by using the procedure
described above, and these data plotted against experimental data taken from the polynomials
depicted in figures 6 and 7. The results are shown in figures 11 and 12. Bearing in mind that
the NH,-K pair is the most alike in properties (figures 6 and 7), the observed much poorer
correlations are the expected results.

(¢) The need for other models

A problem with the above approaches is that to choose which two ions in a ternary mixture
are behaving most similarly in a zeolite it is important to obtain a quantity of experimental
data on the ternary equilibrium as well as the binary exchange isotherms before any prediction
can be safely attempted. Some data on the ternary compositions are absolutely necessary for
Barri & Rees’ (1980) approach. Even when it is possible to choose the most alike ion pair
unambiguously, the predictions can be quite approximate, and certainly it would be dangerous
to attempt to further predict from these data the effects that changes in the ionic strength of
the external solution may have on the zeolite selectivity. This, however, is an important
requirement of a useful model for equilibrium ternary ion exchange (Fletcher & Townsend
19814d). For this reason models such as the above can be inadequate and therefore other
approaches have been developed. Among these, solid solution models, designed to predict
equilibrium compositions by calculating ternary exchange activity coefficients from binary
data, have achieved some success (Elprince & Babcock 1975; Elprince ef al. 1980).

The rationale behind these approaches follows from the discussion at the beginning of this
section. It is possible to calculate the free energies of exchange for ternary exchange reactions
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from data for the appropriate binary systems (the ‘triangle rule’). If, therefore, a suitable model
for the calculation of ternary activity coefficients can be developed, then the actual selectivity
of the exchanger for any ternary composition can be determined, since from (3) and (8)

—2,2,2 (v}‘wAGe)]

u’v_w

= -1 _
v,quG(Eu,Ev) = (v:lwdi)(Eu,Ew) X exp [ RT

(43)

where (,%,AG®) is a standard free energy per equivalent of exchange. (This equals the standard
free energy change per mole when only univalent ions are concerned in the process).

The thermodynamic model of Fletcher & Townsend (19814) enables values of ¢,, ¢ and
¢ to be determined directly from experimental data. Nevertheless, for accurate results, many
experimental data are required. It appears that for some cases involving resins or clays the solid
solution models (which are easy to apply) are very adequate (Elprince & Babcock 1975; Chu
& Sposito 1981). It is important therefore to see if these models can be applied readily to zeolite
exchangers, or at least to define the conditions under which they may be applicable to these
materials. These matters are discussed in the next two sections.

6. PREDICTION OF ACTIVITY COEFFICIENTS FOR THE TERNARY EXCHANGE
EQUILIBRIUM FROM BINARY DATA ONLY

(a) The model of Elprince & Babcock (1975)

The solid.solution model of Elprince & Babcock (1975) consists of a set of equations that
relate the activity coeflicients of ions in the exchanger to a series of constants that represent
energies of interaction between the exchangeable cations in the system. Their approach
developed an earlier model (Wilson 1964). The Wilson model represented non-ideality in terms
of the Raoult law and used additive interaction terms to describe the non-ideality. Guggenheim
(1935) and later Pitzer (19734, &), both also derived models for strong aqueous solutions of
electrolytes involving ion—ion interaction terms, but used instead the Henry law as the criterion
for ideality. For exchanges involving two ions only, the equations of Elprince & Babcock (1975)
are (for the uni-univalent case):

- . — A A
Ingy, = —In(E,+ 4,5 Ep) +EB(EA+£;AAB_E_B+EE:A )> (44)
BA.

— — _ A Y|
lngB ln( A BA+ B)+ A<EAABA+EB EA+EB AAB) (45)
(Note that the second bracketed term in (45) differs from that given in the original paper
(Elprince & Babcock 1975), where the signs were inadvertently reversed). The 4 values
represent differences in interaction energies between pairs of like and unlike ions. So, for
example,

Axp = (vp/va) exp [—[Aag—Aaa)/RT], (46)

where v,, vy are the molar volumes of the pure components and A,5—A,, is the difference
in interaction energies between unlike and like icn pairs within the exchanger. The terms g,,
gp are the activity coefficients of ions A?A, B% in association with their equivalents of exchanger
framework (Gaines & Thomas (1953) convention).
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The equations can be generalized for multicomponent exchange (Elprince & Babcock 1975).
For exchange involving three univalent ions, the general equation is

Ing, =1— (méuEiAui)—ﬁ [EuAm/ 3 (E, Aij)] (47)

i=u ji=u

A, B, C u
[ B, C A| = [V ] .
C, AL B w

Given, therefore, experimental data for the three binary exchanges A<=B, B==C and C=A,

for

the values of 4,5, Ag, can be evaluated by using (44) and (45). These values can then be
inserted into (47) to obtain ¢,, ¢ and ¢.. Implicit in this method is the assumption that the
A values so obtained are constant. However, this approach has been applied successfully to
clays not only by Elprince & Babcock (1975) but also by Wiedenfeld & Hossner (1978).

The procedure was therefore applied also to the Na-NH,~K-MOR system. To obtain the
A values, an iterative procedure was adopted, since (44) and (45) do not lend themselves to
simple simultaneous solution. A;; values were calculated as a function of crystal phase
composition for each of the three binary exchanges NH, ==Na, K=Na and K==NH, (shown
in figure 1). Activity coefficients for the three binary systems were obtained by using the
procedure of Gaines & Thomas (1953), and the results are shown as a function of crystal phase
composition in figure 13, together with the respective plots showing the corresponding
variations of the corrected selectivity coefficient K. Figure 14 shows values of 4;; predicted
from the activity coefficient data depicted in figure 13.

In (FH4Kg)

Exg, Eyg Ex

Ficure 13. Plots of the binary corrected selectivity quotient as a function of (a) Eyy,, (6) Ex and (¢) Ey, obtained
by using the procedure of Gaines & Thomas (1953) on the data shown in the corresponding figure 14, b, c.
Also shown are plots of the activity coefficients (a) gna, gxm, () Enas £x and (¢) gxp, &k
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Ficure 14. (a) Plots of the interaction terms Ay, ng, and Ay, obtained by using the data in figure 14, b and the
procedure of Elprince & Babcock (1975). 4 values are plotted against E,, where u = NH, and K respectively.
The equations could not be solved for values of Ay, corresponding to Ex < 0.5. (5) Plots of Ay, na and Agya
corresponding to data in figure 144 with E, as for figure 144. Again, Agy, values could not be obtained for
Eg <0.5.

It is evident that the A;; values are a strong function of the crystal phase composition, even
for the binary exchanges. Indeed, for the K==Na and K<=NH, exchanges the equations
proved to be insoluble over certain composition ranges of the isotherm. The approach of
Elprince & Babcock (1975) thus appears inapplicable to the Na-NH,~K-MOR system on two
counts. First, the 4;; and Aj; values are not constant even for the binary exchanges. Secondly,
it is frequently impossible to obtain unique solutions for A;; and A4;; for some crystal phase
compositions. This failure of the model is in marked contrast to its successful application to
clay minerals (Elprince & Babcock 1975). Possible reasons for this failure are discussed in the
next section.

(b) Predictions of activity coefficients from the ‘ sub-regular’ solution model

More recently, another procedure for the prediction of ternary activity coefficients in clays
has been reported (Elprince et al. 1980). This procedure uses a convergent power series
(Margules equation) to represent the behaviour of activity coefficients in a multi-component
solid solution, and is an extension of the ‘sub-regular’ solution model of Hardy (1953). The
general form of the equation for a multi-component system is (Elprince et al. 1980)

Infy= ¥ XX+ X dRXXX A+, (48)
i,j#u i,ji,k#u
where f, is the activity coefficient of ion u in the multicomponent system, ¢;; and djy, are
coefficients and X; is the mole fraction of ion 1 in the mixture. If the convergent series is truncated
after the cubic terms, then for ion u in a ternary mixture the corresponding ternary activity
coefficient is

Ing, = c® X2+, X2+ X, X, +d®, X3 +dW,, X3 +dW, X2 X, +d0, X, X2, (49)

VVw
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where
@ =21In f2—In f3, (50)
4 = 2(In f5 —In £3), (51)
c%‘)=%(3ln e+ 3In fi5—1In £ —In £ —In ¥ —In f7), (52)
di) = 3(In f3—1In £3) + (In £ —In f;2 +1n f7 —In ) (53)
where, for example, fi7 is the binary activity coefficient (mole fraction convention) of

component i when its mole fraction approaches zero in a binary mixture of i and j.

By using this model, good agreement was obtained between experimentally-determined and
predicted data for the ternary system NH,-Ba—La-montmorillonite (Elprince et al. 1980). As
for the earlier model of Elprince & Babcock (1975) it was assumed that no experimental data
for the ternary exchange equilibrium were required a prior: for the application of the model.
Subsequently, however, the Margules equation model has been refined by Chu & Sposito
(1981), who contradicted this assumption and asserted that ‘the sub-regular model for the
ternary system cannot be expressed solely in terms of parameters that depend only on data
obtained for binary systems’. A new and extra parameter was introduced (Chu & Spositc 1981)
that requires some experimental data on the ternary exchange equilibrium for its evaluation.
For the NH,~Ba-La-montmorillonite system this parameter was found to approximate to zero,
which explained the good agreement observed earlier (Elprince et al. 1980).

Since the ‘sub-regular model’ has been applied quite successfully to clays, it seemed logical
to apply the model also to the experimental data reported here for the three binary exchanges
NH,=Na, K=Na and K=NH, in mordenite (figure 1) to calculate values of ¢,, Py,
and ¢y and hence predict ternary equilibrium behaviour. These results could then be compared
with the experimental data (figures 2 and 4). For exchanges involving univalent ions only,
Jij = &> etc., so values of fi7, /7 for each binary exchange can in principle be taken from the
extrema of the plots of g;, g;; shown in figure 13. (So, for example, with figure 134, g;; = gyg,
and g = gy, as Exy,—~>0). However, since the depicted curves are best-fitting polynomials
that are minimally constrained because of the lack of experimental data in the limits E;, £;—0,
this is not a good approach.

A much better procedure is outlined by Elprince et al. (1980). The standard expression for
the excess free energy of a binary system 1is

IGP = RT(X;In f{+ X;In f;). (54)

Also, the activity coefficients of the ions in the binary exchange may be expressed in terms of
a Margules equation so that (for example)

Inf, = X2[(2ln & —In f&) +2X,(Inf& —In f&)]. (55)

u

Since for exchange involving ions of only one valency, X; = E; and f; = g;, substitution of
suitable Margules-type expressions into (54) leads, for a given pair of exchanging ions, to

V6P = B E, RT(Ingg, +E, (In g3, —Ingi) 1. (56)
Equation (56) not only enables g%, and g%, to be evaluated, but provides a test of the theory

itself, since a plot of Y“G¥/RT E, E, against E, should be linear.
By using the data depicted in figure 13, values of GF and YGZ/RTE,E, were therefore
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calculated, and plotted against E,. The results for the three binary exchanges in mordenite
are shown in figure 15. The plots of "GE/RT E, E, against E,, for the NH, ==Na and K=Na
exchanges are parabolic, which shows that the above model is not an adequate description of
these exchange equilibria in the zeolite. In contrast, the plot of 3G¥/RT Ey ENH4 against Ey
(figure 16¢) conforms fairly well to a straight line. (It is of interest that when the theoretical
approach of Soldatov & Bychkova (1980) was applied to these same exchange equilibria in
mordenite, their model also succeeded best with this pair of ions (see §5)). The very substantial
deviations from linearity observed for two of the binary exchange systems (figures 154, §) made
the meaning of any subsequent predictions of activity coeflicients for the ternary exchange
difficult to ascertain.

4000~ 0
(@ 0
,’T: -
g =
g 2000 - ? S —200
? S —200 &
T r ; =
= ) &
Ea ~ <
zz 0 % g —400
—400 Mz
[ R T B
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= ]
L Z
8 1%
] M M
Z | Iy I
(&) A o
> ) =
% 4 N &
] & &}
P - g
w
2 ) M
o+ Mz
1 | | L
0 0.4 0.8
Exu, Ex

Ficure 15. Plots of YGE and (UGE/RT E, E, as a function of equivalent fraction, based on activity coefficient data
shown in figure 13. Figure 15a corresponds to 13a ¢t seg. The plots of YG¥/RTE, E, should be linear for
agreement with theory; only for the K-NH, pair is this seen (cf. figure 10).

(¢) Concluding remarks

The failure of the models of both Elprince & Babcock (1975) and of Elprince et al. (1980)
when they are applied to the Na—NH,—~K-MOR system should not be taken to imply general
criticisms of these approaches. As emphasized above, these models worked quite well for clays,
even when the exchanges involved multivalent ions. Rather, the failure should be ascribed to
differences in the properties of a typical zeolite compared to a clay. The probable cause of the
failure is the existence of a much more marked site heterogeneity in the zeolite, a phenomenon
that has been briefly discussed elsewhere (Fletcher & Townsend 19814). This can, of course,
arise in a clay or resin and has been used by workers to explain minor deviations from ideal
behaviour in these materials (Soldatov & Bychkova 1971, 19804; Elprince et al. 1980; Goulding
& Talibudeen 1980). Site heterogeneity is however an intrinsic property of zeolites (Barrer &
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Klinowski 1977, 1979a, ). This matter is discussed further below, in terms of experimentally
measured activity coefficients for the ternary exchange of sodium, ammonium and potassium
ions in mordenite.

7. EXPERIMENTAL DETERMINATION OF TERNARY ACTIVITY COEFFICIENTS
IN EXCHANGERS

(a) Introduction

In addition to the thermodynamic treatment adopted by Fletcher & Townsend (1981 a, 4),
which was derived with zeolites primarily in mind, other workers have published procedures
for determining activity coefficients of ions in a multi-component exchanger phase. So, when
considering in particular exchange in organic resins, Bychkova & Soldatov (1980) described a
method like that of Fletcher & Townsend, which also uses the equivalent fraction convention
as the concentration scale in the exchanger. More recently, Chu & Sposito (1981) published
a similar formulation in a study of ternary ion exchange in clays, which used the mole fraction
scale (Sposito & Mattigod 1979). All three approaches derive basically from an application
of the Gibbs—Duhem equation to the exchanger phase. Obviously, such treatments cannot be
dependent on the particular chemical properties of the phase under investigation. It is
instructive therefore to compare the three treatments, and check that they are indeed fully
compatible.

Both the treatment of Bychkova & Soldatov (1980) and that of Chu & Sposito (1981) begin
by defining pseudobinary coefficients, which are related to three binary coefficients by the
relation shown in (32). Equations for the activity coefficients are then derived in terms of the
pseudobinary coefficients. Evaluation of activities required knowledge of the dependence of
the pseudobinaries on the ternary composition. For accurate work, detailed experimental data
on the equilibrium between the exchanger and solution phase are required over the whole
ternary composition plot. The treatment of Fletcher & Townsend (19814) begins from the
opposite side, by defining constants for the ternary equilibrium % K, (see equation (2)).
Subsequent application of the Gibbs-Duhem equation leads, however, to two quotients, each of
which involves just two of the ;% K, terms. Simplification of these quotients then gives rise also
to pseudobinaries (see equations (27) and (28)), which are very similar in form to those of other
workers (Bychkova & Soldatov 1980; Chu & Sposito 1981).

Nevertheless, some differences remain. First, because Chu & Sposito use the mole fraction
convention, their equations (rightly) do not have terms involving only the valencies of the
exchanging ions, and for a given system, therefore, the numerical values of the activity
coeflicients so derived differ from these calculated with the equivalent fraction scale (Barrer
& Townsend 1983). (The valence term is not seen in the equations of Bychkova & Soldatov
(1980) either, but this is apparently because they are considering exchanges involving univalent
ions only (Bychkova & Soldatov 1980).)

A second and important procedural difference is seen when either Chu & Sposito (1981)
or Bychkova & Soldatov (1980) are compared with Fletcher & Townsend (1981). Following,
for example, Bychkova & Soldatov, the activity coeflicient for the third ion is

1 L _ le
?(ln¢c) =f E,dln (éf(})"'f Egdln (%f(}); (87)
c

Iy ls
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where 7 7
ll =In [éfG(EC)]’ 12 =In []é'%‘(}(fc)]’

ly=1In [é'iG(EC=1)]’ ly=1In [ng(EC=I)]

and where (for example) 44, is a corrected selectivity quotient for the pseudobinary
equilibrium between ions C#¢ and A#A. Thus

& ¢ = Ef*aay*c/EfFca®s. (58)
Comparison of this definition with (10) shows that
Aoa=2azp20(8H )" (59)
By inserting this result into (57) and transforming differentials

E _ Eg _ _ _
ln ¢%AZB = fOAIHJC—AdEA-FfO lnfc_BdEB""EAlntc_A(E’A)_EB ln £C—B(EB)’ (60)

which is identical with (22) provided z, = z5 = z,. However, it is not possible by the same
procedure to so easily prove the identity of the two treatments (namely those of Fletcher &
Townsend (1981 4) and Bychkova & Soldatov (1981)) for ¢, and ¢g. This is because Bychkova
& Soldatov always express each activity coefficient in terms of the concentrations of the other
two ions.

(b) Drrect determination of activity coefficients from the isotherm

In the treatment of Fletcher & Townsend (19814) values of ¢, ¢z and ¢ are in terms of
E, and Ey only. This effectively simplifies the calculation of the values of the activity
coefficients, since it is only necessary to know the variation of just two functions with the crystal
phase composition to evaluate all three activity coefficients. The dependencies of these two
functions In y._, and In y_p can be expressed in terms of just two polynomials in £, and Eg
(not identical to the polynomials described in §5a), namely

Inye s = izjoei(EA)i"‘]El &i(Eg) (61)
and Inycp= é ﬂp(EA)p+ pX Hq(EB)q' (62)
p=0 g=1

(Note that the polynomials above incorporate the valence terms and the values of £% , and
#& g The procedure outlined here is therefore different to, and simpler than, that suggested
originally (Fletcher & Townsend 1981 4)). Integration of the polynomials within the prescribed
limits shown in (20)—(22) then leads to values of ¢, ¢ and ¢, for any given exchanger phase
composition. When doing the integrations, it is important to remember that £, and Eg are
inter-dependent. For any valid solution of the equations, £, + Ex < 1. Certain terms in the

equations can therefore disappear, since when £, = 1 then £ = 0, and the converse. So, for
example, from (20), (61) and (62)
m € n

S _ o roo s 0
Inggpec = 3 — [(EA)(HD—I]"'EB[Z GG EA(Eg)V P+ X Np(EA)P+ 2 _g“(EB)q]-
j=ot+1 j=1 p=0 ¢-19+1

(63)
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By using these procedures, values of ¢y,, ¢y, and @i were evaluated as a function of crystal
phase composition for the system Na-NH,~K-MOR. The results are shown as contour
diagrams in figures 16—18. The polynomials of best-fit from which the contour diagrams were
constructed were derived from the 82 experimental points obtained for the ternary equilibrium
only (see figure 2).

These contour diagrams provide an approximate picture of the variation of ¢ values with
crystal composition. In examining them it is important, therefore, to recognize that not every
detail of the contours is necessarily an accurate reflection of some intrinsic property of the

ENa ENa

(@ 0.358 o

0.403
0.448
0.358
0.403
WAV AT v
¢Na A ¢Na 0 8

0.313

0.268
0.493 /W 0.223 WMM 0.223
YAV AVAYA VOB AN AV NATZANA
0.628 N\
AN
0.718 ;A NN
1.168 0673 0.583

ENH4 E_K

Ficure 16. Contour maps of experimentally obtained values of the activity coefficient for sodium in mordenite, ¢y,,
as a function of the composition. The maps were constructed with (a) (3,3) and (6) (4,4) polynomials. The
contours become very close together in the shaded area in figure 16 (a).
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Ficure 17. Contour maps for ¢yy, with (¢) and (b) corresponding to (3,3) and (4,4) polynomial fits,

respectively.
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Ficure 18. Contour maps for ¢y, with (a) and () corresponding to (3,3) and (4,4) polynomial fits,
respectively.

TABLE 7. ACTIVITY COEFFICIENTS CALCULATED BY USING DIFFERENT ORDER POLYNOMIALS FOR
AN-Na AND £ ym,

PHILOSOPHICAL
TRANSACTIONS
OF

Crystal activity coefficients from activity coefficients from

composition third order polynomial data fourth-order polynomial data
Exa Exn, Pna $NH, Pk Pxa Pnu, ?x
0.882 0.053 1.064 1.003 0.691 0.865 0.982 0.769
0.692 0.084 1.092 0.875 0.650 0.851 0.838 0.735
0.463 0.247 1.046 1.035 0.823 0.885 0.936 0.760
0.377 0.549 1.341 1.342 0.721 1.205 1.269 0.662
0.267 0.216 0.796 0.778 0.967 0.583 0.674 0.957
0.279 0.458 1.072 1.113 0.814 0.883 1.032 0.777
0.074 0.107 0.808 0.525 0.996 0.564 0.451 1.013
0.082 0.388 1.091 0.859 0.853 0.799 0.763 0.849
0.071 0.846 2.174 1.001 0.776 1.484 0.868 0.830

exchanger. The dependence of ¢ values on the correct choice of best-fitting polynomial orders

is more marked than for the K, values. This follows from (29) and (53): whereas N}Iff' g K, can

— be evaluated from a knowledge of the polynomial coefficients «; and 4§, only, for ¢, all the
;5 — coefficients for both polynomials corresponding to (20) are required. The marked dependence
olm of the ¢ values'on polynomial orders is seen by comparing the results derived from (3,3) fits
(=4 a (i.e. third order in Ey, and ENH4; see discussion in §5a) with the corresponding (4,4) results
k= O (see figures 16-18 and table 7).

E 9) Inevitably, the effects of the best-fitting procedures is to ‘smooth out’ the actual non-ideality

to some degree (Franklin & Townsend 1984). A test of whether the best-fit ¢ values do
therefore give a reasonable description of non-ideality is to compare measured selectivity
quotients with those predicted by using the best-fit ¢ data and (43). It is most important to
note that in assessing the degree of agreement between measurement and prediction that which
has been attained by using (43), consideration must be given to the considerable sensitivity
of (%@ to small changes in ¢, ¢, and ¢, (see equation (6)).

PHILOSOPHICAL
TRANSACTIONS
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From table 8, a significant improvement in predictive accuracy is seen when (4,4)
polynomials are used rather than the (3,3) equations. On the basis of the earlier discussion on
the dependence of free energy values on polynomial orders (see discussion after (31)), this is
the expected result. By taking all the experimental data (figure 2) into account the average
percentage errors in predictions were (respectively for the (3,3) and (4,4) fits) y§® g K (28.7%,
and 21.19%), g NaKg (14.1% and 14.09) and y, §u,Ke (25.9% and 23.99,). Ways of
improving further the degree of agreement between measurements and predictions, and of
establishing reliable a priori methods of choosing the most appropriate polynomial order, are
currently under study, and are further discussed elsewhere (Franklin & Townsend 1984).

TaBLE 8. ERROR IN (" K PREDICTED FROM POLYNOMIALS OF £ _n, AND £x ng,

(Values in the top half are for third order fits; those in the lower half are for fourth order fits)

average error number of points
percentage largest distribution in group
error error under 109, 10209,  over 209,
it gKg 28.65 128.76 24 16 41
RheKe 14.05 71.64 34 30 17
Na v Ke 25.85 122.30 20 21 40
e kKe 21.12 100.28 25 23 33
REKe 14.02 75.23 35 29 17
wa Ko 23.93 84.85 28 13 40

8. SITE HETEROGENEITY IN THE EXCHANGER PHASE
(a) Introduction

The activity coefficient data for ¢, Py, and @i, depicted in figures 16-18, and determined
for the ternary exchange by application of the Gibbs—Duhem equation (Fletcher & Townsend
19815), are purely phenomenological quantities, representing experimentally-determined
deviations from ideality of the three ions within the mordenite crystal framework. The
complicated dependence of these functions on the exchanger phase composition is most likely
due to site heterogeneity in the exchanger. Site heterogeneity has been noted in resins (Soldatov
& Bychkova 1971); these materials are, however, amorphous in nature, so that non-ideality
cannot be correlated easily with specific sets of ion sites within the resin beads.

In clays, pH-dependent site heterogeneity is a well known phenomenon (Peigneur ¢t al. 1975;
Goulding & Talibudeen 1980; Maes & Cremers 1975, 1977) and this was used to explain the
failure of the sub-regular model to describe adequately the Ba—-NH, exchange in montmorillonite
(Elprince et al. 1980). In zeolites, site heterogeneity can be very marked, giving rise to partial
exchange (Barrer et al. 19773 ; Barrer & Klinowski 1977) and also to phenomena in which some
ions are irreversibly ‘locked’ into certain sites within the framework (Maes & Cremers 1975;
Lai & Rees 19764, b). This heterogeneity arises from the existence of ‘crystallographically
distinct cation sites intimately mixed throughout an anionic framework’ (Barrer & Klinowski

19794).
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(b) General theoretical considerations

From Barrer e al. (1973), for an exchange involving three types of ions within a zeolite that
has n crystallographically distinct yet intimately mixed sub-lattices, the equilibrium constant
may be factorized as 7

v}lea = H (v

t=1

quai)XL(i)’ (64)

’

where %, K,; refers to the equilibrium between ions in the ith site and those in solution. The

function X} (i) expresses the proportion of the total framework charge, which is neutralized by
all ions that are exchanged into the :th site group. So, for example

_ n w _ n )
Eui =2y ﬁui/ Z Z ( ji) = 2y mui/ 2 XL<Z)' (65)
i=1j=u =1
n - n .
Hence v?wKa = iHI (v?wKGi)XL(z) 'Hl (v}lw¢i)XL(l) (66)
= 1«=
2u fwqgfu?v n E_ . )22y 2w X1(%)
vqua = (av 2za:V ) H [ I ( uzzqim)_ Z,2 ] . (67)
’ agtviw ) LBy @) 202 (Ey )20

Equation (66) shows that when ions exchange in a zeolite containing ¢ crystallographically
distinct site groups, it is possible for the ions in each site to behave non-ideally, and yet overall
the exchanges appear to behave ideally. For this to occur, it is only necessary that the product
of the %, K¢; "w®; terms be near constant. This situation has been discussed by Barrer &
Klinowski (1972 a) for binary exchange. (Note that the factorization of (for example) ¢, into
a set of formal ¢, ; terms does nof imply that it is permissible to therefore write down a
‘chemical potential’ in terms of a particular ion in a given sub-lattice within the crystal. For

further discussion on this, see Barrer & Klinowski (19795), Sersale et al. (1981) and Barrer &

Townsend (1984)).

The opposite case is, however, at least as likely. The overall activity coefficients are seen
(equation (67)) to be complicated functions of both the total population of ions in each site
group at a given overall crystal composition, and of the composition of the ions within those
site groups. It is not surprising, therefore, that ¢ values shown in figures 16 to 18 behave in
a complex manner, and that both the approach of Elprince & Babcock (1975) and the
‘sub-regular’ model (Elprince 1980) fail to predict ¢ values adequately since crystallographic
studies have proved that the proportion of charge neutralized on each site group and the
composition of each site group is a function of the overall composition of the zeolite (Costenoble
& Maes 1978).

(¢) Statistical thermodynamic considerations

Barrer & Klinowski (1977) used statistical mechanics to relate the phenomenological activity
coefficients for a binary ion exchange reaction to the framework charge density. If a random
siting of cations is assumed (which is a consistent model for a homogeneous or near-homogeneous
exchanger) the equations are

zazp—zp Ea—2z, E, wyp B2
1 — —11 A“B B ™A A B)_ AA B
ngx = (ean—1)in (A0 taTn)_oarh (68)
zazpN—2gEy—24 ER\ zgwya E2
d _ _1 AZB BLATZA B)__ BWaA LA
an Ingg = (zg7 )ln( iz —7a AgkT (69)

12-2
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. . . . o . . + .
where w,, is an excess interaction energy that arises when pairing of the entering A?A ions
occurs. The term 7 is related to the framework charge density by

7 = N/N,, (70)

where N is the number of ion sites and N, the number of unit charges in the crystal. For
uni-univalent exchange, the equations reduce to the terms involving w, , only and equations
(68) and (69) then imply that for a homogeneous exchanger Ing, and Ingg should vary with
E,, Ey in a symmetrical manner, according to the relative values of w,, and % (Fletcher &

“Townsend 1982). (This behaviour was observed also by Elprince & Babcock (1975) in their

studies of the Na—Rb—Cs—montmorillonite systems, for which their model worked).
In contrast, if the exchanger consists of n sets of crystallographically distinct yet intimately
mixed cation sites, equations (68) and (69) will then become

_ 1 & Bz(EAz+EBz) WA, z]
Ing, = T § [ " (72)
and

_ 12 EzAi(EAi+EBi)wAA,i:I
Ingn = kTEjl[ s

(73)

and the activity coefficients need no longer vary with £, in a symmetrical manner, since both
E,;+FEy; and E,; can also be functions of £, (Fletcher & Townsend 19814)).

9. Final comments

In addition to the other properties that characterize them, zeolites are found generally to
contain crystallographically distinct sets of sites throughout the exchanger framework. Normally,
each set of sites is populated only partially by exchanging ions, and the extent of population
as well as the composition within any site set are both functions of the overall composition of
the exchanger. As a consequence, activity coeflicients for a multicomponent exchange reaction
cannot be predicted from appropriate binary data for a heterogeneous exchanger, since the
phenomenological binary coefficients are complicated functions of each site set, population and
composition, and both these properties will change on introducing other species of ion into the
exchanger. This has been shown to be true for the ternary Na-NH,-K-MOR system by
comparing phenomenological (i.e. experimentally measured) activity coefficient data with
those values predicted from binary data. It appears, therefore, unavoidable that an adequate
description of a multicomponent exchange equilibrium in a heterogeneous exchanger requires
of necessity a very substantial quantity of accurate experimental data over the whole range of
the multicomponent exchanger composition. Given these data, the thermodynamic approach
of Fletcher & Townsend (1981 4) enables relevant thermodynamic parameters to be evaluated
relatively easily.

For binary exchange equilibria, Barrer & Klinowski (1974) have shown that for relatively
low electrolyte concentrations in aqueous solution the ratio of activity coefficients for the ions
in a zeolite should be virtually independent of that external electrolyte concentration. By using
this assumption and also a mathematical model that facilitates the evaluation of activity
coefficients in an aqueous solution containing any number of cation or anion, or both, species
(Fletcher & Townsend 1981¢), exchange equilibria can be successfully predicted over a range
of ionic strengths by using different co-ions (Townsend ¢t al. 1984). Provided the temperature
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is kept constant, such predictions do not in fact require the evaluation of the activity coefficients
for ions in the exchanger phase. Currently, further studies are therefore under way to examine
if similar predictive procedures can be applied to multicomponent exchange equilibria.

We gratefully acknowledge the S.E.R.C. for a postdoctoral Research Grant and a C.A.S.E.
award with Unilever Research Limited. These grants enabled P.F. and K.R.F. respectively,
to participate in this research programme.
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